Impact of internal design on the accuracy of 3-dimensionally printed casts fabricated by stereolithography and digital light processing technology

J Prosthet Dent. 2023 Sep;130(3):381.e1-381.e7. doi: 10.1016/j.prosdent.2023.06.029. Epub 2023 Jul 22.

Abstract

Statement of problem: Altering the internal design of 3-dimensionally (3D) printed dental casts may help to reduce material and time consumption. However, it remains unclear whether such changes would compromise the accuracy of the casts. Further research is also needed to determine the optimal internal design that would maximize printing accuracy.

Purpose: The purpose of this in vitro study was to evaluate the impact of internal design on the accuracy (trueness and precision) of 3D printed dental casts fabricated by stereolithography (SLA) and digital light processing (DLP) technology.

Material and methods: A reference digital cast was obtained by scanning a maxillary typodont with an intraoral scanner to create 4 types of internal designs, including hollow interior with perforated base (HWB), hollow interior without base (HB), all solid (S), and internal support structure with perforated base (SWB). Digital casts with different internal designs were printed by two 3D printers with different technologies (SLA and DLP). The printed casts were scanned by a desktop scanner to obtain standard tessellation language (STL) format research digital casts. All reference and research digital casts were imported into a software program for comparison and analysis of accuracy. Differences between the reference and research digital casts were quantitatively indicated by the root mean square (RMS) value. The Kruskal-Wallis 1-way ANOVA was used to test significant differences between the different internal design types and the Mann-Whitney U test was used to test significant differences between the two 3D printers (α=.05).

Results: The Kruskal-Wallis 1-way ANOVA revealed significant differences in the trueness and precision of different internal design types (all P<.001) for casts printed by both 3D printers. The trueness and precision were significantly worse for the HB design than for the other design types for casts printed by both 3D printers (all P<.05). Regardless of the design type, the trueness was significantly better for casts printed by the SLA-based printer than for casts printed by the DLP-based printer (all P<.05). The precision was significantly worse for casts printed by the SLA-based printer than for casts printed by the DLP-based printer (all P<.05).

Conclusions: The internal design may affect the accuracy of 3D printing. The base is necessary to ensure the accuracy of 3D printed dental casts, whereas the internal support structure did not affect the accuracy of 3D printed dental casts. An all-solid design led to higher precision, but not higher trueness. Dental casts printed with SLA technology have higher trueness and lower precision than those printed with DLP technology.

MeSH terms

  • Computer-Aided Design*
  • Maxilla
  • Models, Dental
  • Printing, Three-Dimensional
  • Stereolithography*