The impact of an active and passive industrial back exoskeleton on functional performance

Ergonomics. 2024 May;67(5):597-618. doi: 10.1080/00140139.2023.2236817. Epub 2023 Jul 22.

Abstract

Due to differences in actuation and design, active and passive industrial back exoskeletons could influence functional performance, i.e., work performance, perceived task difficulty, and discomfort, differently. Therefore, this study investigated and compared the impact of the active CrayX (7 kg) and passive Paexo Back (4.5 kg) on functional performance. Eighteen participants performed twelve work-related tasks with both types of exoskeletons and without (NoExo). The CrayX hindered work performance up to 22% in multiple tasks, compared to the Paexo Back and NoExo, while work performance between NoExo and the Paexo Back condition was more comparable, except for stair climbing (13% hindrance). Perceived task difficulty and discomfort seldomly varied between both exoskeletons. Although the CrayX shows promise to benefit workers, limitations in hindrance and comfort should first be addressed. The Paexo Back has demonstrated an advantage in certain static tasks. However, increasing its potential across a broader range of tasks seems warranted.Practitioner Summary: Differences between industrial back exoskeletons with regard to functional performance, i.e. work performance, discomfort and perceived task difficulty, were investigated by evaluating the active CrayX and passive Paexo Back back exoskeletons. The CrayX significantly hindered functional performance, while the Paexo Back seldomly affected functional performance.Abbreviations: WMSD: Work-related musculoskeletal disorder; NoExo: No Exoskeleton; GD: General discomfort; PTD: Perceived task difficulty; BMI: Body Mass Index.

Keywords: Exoskeletons; device evaluation; human factors; wearable assistive device.

MeSH terms

  • Body Mass Index
  • Exoskeleton Device*
  • Humans
  • Industry
  • Musculoskeletal Diseases*
  • Work Performance*