Microlens array device for laser light shaping in laser scanning smart headlights

Opt Express. 2023 Jul 17;31(15):25307-25317. doi: 10.1364/OE.495206.

Abstract

We present, what we believe to be, a novel microlens array (MLA) scheme for laser light shaping in laser scanning smart headlight. The laser spot has a Gaussian distribution that may reach a high peak power density in the central part, which is called hot spot. When the laser beam is applied to a phosphor plate for luminous conversion, the hot spot of Gaussian beam causes thermal quench and decreases luminous efficacy. To avoid this effect, an MLA is used, so as to achieve a uniform energy distribution. In this study, we propose a laser scanning smart headlight fabricated by a new MLA structure, with an arrangement providing both light uniformity and shaping. The novel MLA is designed by two-dimensional micro-concave lens array yielding a flat-top beam. The flexible fabrication process employs laser drilling to shape the micro-hole array on the glass substrate surface and then etch it to form MLA without requiring any mask lithography process. The full-width half maximum (FWHM) of light output distribution can be adjusted by the glass etching parameters, and the light distribution could be controlled by the arranged layout of the array. Thus, beams with FWHM divergence ranging from 5° to 34° has been fabricated and characterized. The typical pixel shape is a rectangle with two different FWHMs in two orthogonal directions, and the fabrication method achieves this goal as well. This novel design and unique maskless process of the MLAs is a promising tool for development the next generation laser scanning smart headlight.