Novel Latent Heat Storage Systems Based on Liquid Metal Matrices with Suspended Phase Change Material Microparticles

ACS Appl Mater Interfaces. 2023 Aug 2;15(30):36781-36791. doi: 10.1021/acsami.3c05887. Epub 2023 Jul 20.

Abstract

Phase change materials (PCMs) are considered useful tools for efficient thermal management and thermal energy utilization in various application fields. In this study, a colloidal PCM-in-liquid metal (LM) system is demonstrated as a novel platform composite with excellent latent heat storage capability, high thermal and electrical conductivities, and unique viscoelastic properties. In the proposed formulation, eutectic Ga-In is utilized as a high-thermal-conductivity and high-fluidity liquid matrix in which paraffinic PCM microparticles with various solid-liquid phase transition temperatures are suspended as fillers. Good compatibility between the fillers and matrix is achieved by the nanosized inorganic oxides (titania) adsorbed at the filler-matrix interface; thus, the composite is produced via simple vortex mixing without tedious pre- or post-processing. The composite shows unique trade-off effects among various properties, i.e., elastic modulus, yield stress, density, thermal conductivity, and melting or crystallization enthalpy, which can be easily controlled by varying the contents of the suspended fillers. A Joule heating device incorporating the composite exhibits improved electrothermal performance owing to the synergy between the high electrical conductivity and latent heat storage capability of the composite. The proposed platform may be exploited for the rational design and facile manufacture of high-performance form-factor-free latent heat storage systems for various potential applications such as battery thermal management and flexible heaters.

Keywords: EGaIn; colloid; composite; latent heat storage; liquid metal; phase change material; thermal conductivity.