Enhanced removal of perfluorooctanoic acid with sequential photocatalysis and fungal treatment

Environ Sci Pollut Res Int. 2023 Aug;30(39):91478-91486. doi: 10.1007/s11356-023-28588-5. Epub 2023 Jul 20.

Abstract

In this paper, we report the degradation of perfluorooctanoic acid (PFOA), which is a persistent contaminant in the environment that can severely impact human health, by exposing it to a photocatalyst, bismuth oxyiodide (BiOI), containing both Bi4O5I2 and Bi5O7I phases and a fungal biocatalyst (Cunninghamella elegans). Individually, the photocatalyst (after 3 h) and biocatalyst (after 48 h) degraded 35-40% of 100 ppm PFOA with 20-30% defluorination. There was a marked improvement in the degree of degradation (90%) and defluorination (60%) when PFOA was first photocatalytically treated, then exposed to the fungus. GC- and LC-MS analysis identified the products formed by the different treatments. Photocatalytic degradation of PFOA yielded short-chain perfluorocarboxylic acids, whereas fungal degradation yielded mainly 5:3 fluorotelomer carboxylic acid, which is a known inhibitor of cytochrome P450-catalysed degradation of PFAS in C. elegans. The combined treatment likely resulted in greater degradation because photocatalysis reduced the PFOA concentration without generating the inhibitory 5:3 fluorotelomer carboxylic acid, enabling the fungus to remove most of the remaining substrate. In addition, new fluorometabolites were identified that shed light on the initial catabolic steps involved in PFOA biodegradation.

Keywords: Biodegradation; Bismuth oxyiodide; Cunninghamella; Fluoride; Fluorometabolite; PFAS; Photocatalysis.

MeSH terms

  • Biodegradation, Environmental
  • Caprylates*
  • Carboxylic Acids
  • Fluorocarbons*
  • Humans

Substances

  • perfluorooctanoic acid
  • Caprylates
  • Fluorocarbons
  • Carboxylic Acids