Exploring the role of sandwich-type polyoxometalates in {K10(PW9O34)2M4(H2O)2}@PCN-222 (M = Mn, Ni, Zn) for electroreduction of CO2 to CO

Dalton Trans. 2023 Aug 8;52(31):10737-10743. doi: 10.1039/d3dt01535a.

Abstract

To overcome the drawbacks of high solubility and instability of polyoxometalates (POMs) in aqueous solution and to expand their application in the electrocatalytic reduction of CO2 (ECR), we assemble sandwich-type POMs, K10[(PW9O34)2M4(H2O)2] (M = Mn, Ni, Zn, shortened as P2W18M4), into the hexagonal channel of a porphyrin-based metal-organic framework (MOF) PCN-222 to form P2W18M4@PCN-222 composites. Their ECR behavior displays polyoxoanion-dependent activity. P2W18Mn4@PCN-222 demonstrates a faradaic efficiency of 72.6% for the CO product (FECO), more than four times that of PCN-222 (FECO = 18.1%), and exhibits exceptional electrochemical stability over 36 h. P2W18Ni4@PCN-222 and P2W18Zn4@PCN-222 slightly increase (26.9%) and decrease (3.2%) in FECO, respectively. We combine the results with density functional theory (DFT) calculations to help understand the intrinsic reasons which reveals that the rate-determining step (RDS) reaction energy of P2W18Mn4@PCN-222 and P2W18Ni4@PCN-222 is significantly reduced compared to that of PCN-222. It is different in P2W18Zn4@PCN-222. Frontier molecular orbitals electron distribution results hint at directional electron transfer from P2W18Mn4/P2W18Ni4 to the porphyrin ring active center in PCN-222, promoting the electro-reduction of CO2 activity. By contrast, P2W18Zn4 may accumulate electrons from PCN-222, thus facilitating the hydrogen evolution reaction (HER). This work reveals the critical role of sandwich-type POMs in manipulating the electron transfer pathway during the electrocatalytic process. Our findings would broaden the scope of POM applications in electrochemical carbon dioxide reduction.