Structural, vibrational and electronic properties of nitrogen-rich 2,4,6-triazide-1,3,5-triazine under high pressure

J Mol Model. 2023 Jul 19;29(8):257. doi: 10.1007/s00894-023-05651-z.

Abstract

Context and results: 2,4,6-triazide-1,3,5-triazine (TAT) has received widespread attention for its great potential to synthesize or convert to nitrogen-rich high energy density materials (HEDMs). The TAT structure alteration in the compression process up to 30 GPa has characteristics as follows: (a) [N3] groups straighten; (b) [N3] groups gather toward the six-membered C-N heterocycles. At about 5 GPa, Raman peak split at 700 cm-1 was observed both in calculation and in-situ Raman experiment, which is caused by pressure-induced intramolecular stress. Besides, the broad band of the amorphous two-dimensional C=N network (centered at 1630 cm-1) occurred at about 12 GPa. Meantime, the study on electronic features suggests the pressure-induced deformation in TAT molecular structure cause the discontinuous change of band gap at about 4.5 GPa and 8.0 GPa, respectively.

Computational and theoretical techniques: The static compression process of TAT was explored in the range of 0-30 GPa by using dispersion corrected density functional theory (DFT-D) calculations combined with in-situ Raman experiment. The GGA/PBE+G06 method that has less errors than other calculation methods was used to predict the geometry structure, vibrational properties and electronic structure of TAT under pressure.

Keywords: 2,4,6-triazido-1,3,5-triazine; DFT; High pressure; Nitrogen-rich compound.