The contribution of typhoon local and remote forcings to storm surge along the Makou-Dahengqin tidal reach of Pearl River Estuary

Sci Total Environ. 2023 Nov 15:899:165592. doi: 10.1016/j.scitotenv.2023.165592. Epub 2023 Jul 17.

Abstract

Due to the interaction between upstream discharge and astronomical tides in tidal reaches, the typhoon-induced storm surge processes are quite different from that in other coastal regions. Investigating the contributions of driving factors is essential to deepen the understanding of storm surges in tidal reaches. In this study, a coupled hydrological-hydrodynamic storm surge model is first developed to explore the main driving factors of storm surges in Makou-Dahengqin tidal reach during the three most influential typhoon events (Hagupit, Hato and Mangkhut). After that, the machine learning method is integrated to assess the water level in response to storm surges. The driving factors of storm surge are decomposed into remote forcing (upstream discharge, astronomical tide) and direct local forcing (wind stress, atmospheric pressure). The relative contributions of remote forcing are the highest near the estuary mouth. The relative contributions of local forcing to water levels are higher in the sections 40-80 km away from the estuary mouth. The most impacting period of the local forcing is about 48 h, while the relative contributions of remote forcing increase before and after the period. The local forcing-induced surges are highest at the upper reach during Hagupit, while it causes extreme surges at the estuary mouth during more powerful typhoons (Hato, Mangkhut). The maximum water levels and remote forcing-induced maximum surges invariably appear at the upper reach. However, when local and remote forcings are in the same phase, the maximum storm surge appears in the lower reaches during Hato. If local and remote forcings are in the same phase, the peak water levels would be amplified by up to 15.04 %, 36.23 % and 40.68 % during Hagupit, Hato and Mangkhut, respectively. Moreover, Remote forcing contributes more to the amplification of peak water levels than local forcing does, accounting for 68.5 % to 100 %.

Keywords: Machine learning methods; Numerical modeling; Relative contribution; Storm surge; Typhoon; Upstream discharge.