The Role of Interchain Force and/or Chain Entanglement in the Melt Strength and Ductility of PLA-Based Materials

Chem Asian J. 2023 Sep 1;18(17):e202300577. doi: 10.1002/asia.202300577. Epub 2023 Aug 4.

Abstract

As an eco-friendly material, PLA was a desirable alternative to polyethylene and polypropylene films due to its biodegradability. The preferable melt strength of PLA-based materials was a key factor in ensuring its processing using extrusion blow. This paper focuses on the influence of interchain force and/or chain entanglement on the melt strength and ductility of PLA-based materials in recent years. In addition, the preparation of PLA-based materials via physical blending or reactive processing was also summarized. The blending of PLA with a flexible heteropolymer, driven by the interchain force and/or chain entanglements, were characterized as a practicable method for toughening PLA-based materials. Also, the restructuring of PLA chains, by branching based on chain entanglement, was suitable for increasing chain entanglements in PLA matrix, yielding satisfactory melt strength and ductility. This review aims to elucidate the relationship between interchain forces and/or entanglement with the melt strength and ductility of PLA-based materials. An essential and systematic understanding of the tailoring melt strength and rheological properties of PLA by interchain forces and/or entanglement was apt to improve and perfect the processing technology of the extrusion blow, and consequently improve the tensile strength and toughness of PLA films.

Keywords: chain entanglement; interfacial interchain force; physical blending; polylactide; reactive processing.

Publication types

  • Review