Antitumor Activity of Ferulic Acid Against Ehrlich Solid Carcinoma in Rats via Affecting Hypoxia, Oxidative Stress and Cell Proliferation

Cureus. 2023 Jul 17;15(7):e41985. doi: 10.7759/cureus.41985. eCollection 2023 Jul.

Abstract

Background Ferulic acid is a natural compound commonly found in fruits and vegetables like tomatoes, sweet corn, rice bran, and dong quai. It has various beneficial effects on the body, such as anti-inflammatory, anti-apoptotic, hepatoprotective, cardioprotective, and neuroprotective properties. Aims We conducted a study to investigate the antitumor activity of ferulic acid against Ehrlich solid carcinoma (ESC), specifically by affecting hypoxia-inducible factor (HIF)-1α and its subsequent effects on other factors like nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), cellular Myc (cMyc), cyclin D1, mammalian target of rapamycin (mTOR), and signal transducer and activator of transcription 3 (STAT3). Materials and methods The study involved implanting rats with ESC cells and administering 50 mg/kg of ferulic acid orally daily for eight days. Sections of the muscles with ESC were stained with toluidine blue or immunostained with anti-HIF-1α antibodies. The tumor samples were used to evaluate the expression of HIF-1α, Nrf2, HO-1, cMyc, cyclin D1, mTOR, and STAT3. Results Ferulic acid increased mean survival time, reduced tumor volume and weight, and improved the appearance of the tumor tissue. Furthermore, ferulic acid significantly elevated the expression of Nrf2 and HO-1, while reducing the expression of HIF-1α, Nrf2, HO-1, cMyc, cyclin D1, mTOR, and STAT3. Conclusions Ferulic acid can reduce tumor size and weight while improving the structure of muscle cells, suggesting it may have antineoplastic activity against ESC. Further investigation revealed that ferulic acid downregulates HIF-1α, increasing the expression of antioxidant proteins Nrf2 and HO-1. Additionally, ferulic acid decreases the expression of proliferation markers cMyc and cyclin D1 and downregulates cellular regulators mTOR and STAT3.

Keywords: cellular myc (cmyc); cyclin d1; ehrlich solid carcinoma (esc); heme oxygenase-1 (ho-1); hypoxia-inducible factor (hif)-1α; mammalian target of rapamycin (mtor); nuclear factor erythroid 2–related factor 2 (nrf2); signal transducer and activator of transcription 3 (stat3).