Identification of breast lesion through integrated study of gorilla troops optimization and rotation-based learning from MRI images

Sci Rep. 2023 Jul 18;13(1):11577. doi: 10.1038/s41598-023-36300-3.

Abstract

Breast cancer has emerged as the most life-threatening disease among women around the world. Early detection and treatment of breast cancer are thought to reduce the need for surgery and boost the survival rate. The Magnetic Resonance Imaging (MRI) segmentation techniques for breast cancer diagnosis are investigated in this article. Kapur's entropy-based multilevel thresholding is used in this study to determine optimal values for breast DCE-MRI lesion segmentation using Gorilla Troops Optimization (GTO). An improved GTO, is developed by incorporating Rotational opposition based-learning (RBL) into GTO called (GTORBL) and applied it to the same problem. The proposed approaches are tested on 20 patients' T2 Weighted Sagittal (T2 WS) DCE-MRI 100 slices. The proposed approaches are compared with Tunicate Swarm Algorithm (TSA), Particle Swarm Optimization (PSO), Arithmetic Optimization Algorithm (AOA), Slime Mould Algorithm (SMA), Multi-verse Optimization (MVO), Hidden Markov Random Field (HMRF), Improved Markov Random Field (IMRF), and Conventional Markov Random Field (CMRF). The Dice Similarity Coefficient (DSC), sensitivity, and accuracy of the proposed GTO-based approach is achieved [Formula: see text], [Formula: see text], and [Formula: see text] respectively. Another proposed GTORBL-based segmentation method achieves accuracy values of [Formula: see text] , sensitivity of [Formula: see text] , and DSC of [Formula: see text]. The one-way ANOVA test followed by Tukey HSD and Wilcoxon Signed Rank Test are used to examine the results. Furthermore, Multi-Criteria Decision Making is used to evaluate overall performance focused on sensitivity, accuracy, false-positive rate, precision, specificity, [Formula: see text]-score, Geometric-Mean, and DSC. According to both quantitative and qualitative findings, the proposed strategies outperform other compared methodologies.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Breast Neoplasms* / diagnostic imaging
  • Female
  • Humans
  • Magnetic Resonance Imaging / methods
  • Rotation