Visualized Lateral Flow Assay for Dual Viral RNA Fragment Detection

Anal Chem. 2023 Aug 1;95(30):11187-11192. doi: 10.1021/acs.analchem.3c02019. Epub 2023 Jul 18.

Abstract

In this technical note, we report an easy-to-produce, reverse-transcription-free, and protein-enzyme-free lateral flow assay for detection of viral RNA fragments by taking SARS-CoV-2 ORF1ab and N as target models. Catalytic hairpin assembly is utilized for dual RNA fragment orthogonal reaction to generate copious amounts of opened hairpin duplexes, which bridge DNA-modified gold nanoparticles and capture strands on the strip to induce coloration. The dual RNA fragments are simultaneously visualized during one time of sample flow, and single-base-mismatched nontarget sequences can be differentiated. The test strip can be flexibly adapted to detect evolutional SARS-CoV-2 variants such as Delta and Omicron. It also shows potential in visually detecting long-sequence virus simulants and achieves a sensitivity comparable to that of RT-qPCR by incorporation with upstream sample amplification. The lateral flow assay should offer a convenient and reliable technique for viral nucleic acid detection.