H3K36 methylation maintains cell identity by regulating opposing lineage programmes

Nat Cell Biol. 2023 Aug;25(8):1121-1134. doi: 10.1038/s41556-023-01191-z. Epub 2023 Jul 17.

Abstract

The epigenetic mechanisms that maintain differentiated cell states remain incompletely understood. Here we employed histone mutants to uncover a crucial role for H3K36 methylation in the maintenance of cell identities across diverse developmental contexts. Focusing on the experimental induction of pluripotency, we show that H3K36M-mediated depletion of H3K36 methylation endows fibroblasts with a plastic state poised to acquire pluripotency in nearly all cells. At a cellular level, H3K36M facilitates epithelial plasticity by rendering fibroblasts insensitive to TGFβ signals. At a molecular level, H3K36M enables the decommissioning of mesenchymal enhancers and the parallel activation of epithelial/stem cell enhancers. This enhancer rewiring is Tet dependent and redirects Sox2 from promiscuous somatic to pluripotency targets. Our findings reveal a previously unappreciated dual role for H3K36 methylation in the maintenance of cell identity by integrating a crucial developmental pathway into sustained expression of cell-type-specific programmes, and by opposing the expression of alternative lineage programmes through enhancer methylation.

MeSH terms

  • Cell Differentiation / genetics
  • Cell Lineage / genetics
  • Epigenesis, Genetic*
  • Fibroblasts / metabolism
  • Histones* / genetics
  • Histones* / metabolism
  • Methylation

Substances

  • Histones