Body Armor-Inspired Double-Wrapped Binder with High Energy Dispersion for a Stable SiO x Anode

ACS Appl Mater Interfaces. 2023 Jul 26;15(29):34852-34861. doi: 10.1021/acsami.3c05228. Epub 2023 Jul 17.

Abstract

The high specific capacity and relatively low volume expansion of silicon suboxide (SiOx) highlight its potential as one of the most promising anode materials for lithium-ion batteries. Nevertheless, the traditional binder of polyacrylic acid (PAA) still cannot adapt to enormous stress during the repeated volume expansion/contraction owing to its intrinsic rigid backbone. Inspired by the "soft and hard composite body armor", we herein design a double-wrapped binder consisting of PAA with a high internal Young's modulus (hard part) and polyurethane (DOU) with a low external Young's modulus (soft part). When the SiOx particle expands during lithiation, the rigid PAA firstly accommodates the volume change to dissipate most of the inner stress, and the elastic DOU with triple dynamic bonds serves as a buffer layer to absorb the residual stress via the breakage/formation of dynamic bonds. By optimizing the PAA/DOU ratio, the SiOx anode can maintain the integrity during long-term cycling and deliver a relatively high reversible capacity of 1064.1 mAh g-1 with a preeminent capacity retention of 83.7% at 0.5C after 300 cycles. Such a double-wrapped binder can provide a novel design strategy for multicomponent functional polymer binders toward high-performance SiOx anodes.

Keywords: SiOx; anode; double-wrapped binder; soft and hard composite; triple dynamic bonds.