Anions Regulation Engineering Enables a Highly Reversible and Dendrite-Free Nickel-Metal Anode with Ultrahigh Capacities

Adv Mater. 2023 Oct;35(42):e2305368. doi: 10.1002/adma.202305368. Epub 2023 Sep 19.

Abstract

The development of safe and high-energy metal anodes represents a crucial research direction. Here, the achievement of highly reversible, dendrite-free transition metal anodes with ultrahigh capacities by regulating aqueous electrolytes is reported. Using nickel (Ni) as a model, theoretical and experimental evidence demonstrating the beneficial role of chloride ions in inhibiting and disrupting the nickel hydroxide passivation layer on the Ni electrode is provided. As a result, Ni anodes with an ultrahigh areal capacity of 1000 mAh cm-2 (volumetric capacity of ≈6000 mAh cm-3 ), and a Coulombic efficiency of 99.4% on a carbon substrate, surpassing the state-of-the-art metal electrodes by approximately two orders of magnitude, are realized. Furthermore, as a proof-of-concept, a series of full cells based on the Ni anode is developed. The designed Ni-MnO2 full battery exhibits a long lifespan of 2000 cycles, while the Ni-PbO2 full battery achieves a high areal capacity of 200 mAh cm-2 . The findings of this study are important for enlightening a new arena toward the advancement of dendrite-free Ni-metal anodes with ultrahigh capacities and long cycle life for various energy-storage devices.

Keywords: Ni anodes; Ni-metal batteries; electrolyte regulation; metal electroplating/stripping; ultrahigh capacities.