Genetic mutations in smoking-associated prostate cancer

Prostate. 2023 Sep;83(13):1229-1237. doi: 10.1002/pros.24554. Epub 2023 Jul 16.

Abstract

Objectives: Tobacco smoking is known to cause cancers potentially predisposed by genetic risks. We compared the frequency of gene mutations using a next generation sequencing database of smokers and nonsmokers with prostate cancer (PCa) to identify subsets of patients with potential genetic risks.

Materials and methods: Data from the American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange (GENIE) registry was analyzed. The GENIE registry contains clinically annotated sequenced tumor samples. We included 1832 men with PCa in our cohort, categorized as smokers and nonsmokers, and compared the frequency of mutations (point mutations, copy number variations, and structural variants) of 47 genes with more than 5% mutation rate between the two categories and correlated with overall survival using logistic regression analysis.

Results: Overall, 1007 (55%) patients were nonsmokers, and 825 (45%) were smokers. The mutation frequency was significantly higher in smokers compared to nonsmokers, 47.6% and 41.3%, respectively (p = 0.02). The median tumor mutational burden was also significantly higher in the samples from smokers (3.59 mut/MB) compared to nonsmokers (1.87 mut/MB) (p < 0.001). Patients with a smoking history had a significantly higher frequency of PREX2, PTEN, AGO2, KMT2C, and a lower frequency of adenomatous polyposis coli (APC) and KMT2A mutations than compared to nonsmokers. The overall mortality rate (28.5% vs. 22.8%) was significantly higher among smokers (p = 0.006). On a multivariate logistic regression analysis, the presence of metastatic disease at the time of diagnosis (OR: 2.26, 95% CI: 1.78-2.89, p < 0.001), smoking history (OR: 1.32, 95% CI: 1.05-1.65, p = 0.02), and higher frequency of PTEN somatic gene mutation (OR: 1.89, 95% CI: 1.46-2.45, p < 0.001) were independent predictors of increased overall mortality among patients with PCa. Patients with PTEN mutation had poorer overall survival compared to men without PTEN mutations: 96.00 (95% CI: 65.36-113.98) and 120.00 (95% CI: 115.05-160.00) months, respectively (p < 0.001) irrespective of smoking history although the G129R PTEN mutation was characteristically detected in smokers.

Conclusions: PCa patients with a tobacco smoking history demonstrated a significantly higher frequency of somatic genetic mutations. Whereas mutations of PREX2, KMT2C, AGO2, and PTEN genes were higher in smokers, the APC and KMT2A mutations were higher in nonsmokers. The PTEN somatic gene mutation was associated with increased overall mortality among patients with PCa irrespective of smoking history. We found that G129R PTEN mutation known to reduce the PTEN phosphatase activity and K267Rfs*9 a frameshift deletion mutation in the C2 domain of PTEN associated with membrane binding exclusively detected in smokers and nonsmokers, respectively. These findings may be used to further our understanding of PCa associated with smoking.

Keywords: PTEN; pathogenic variants; prostate cancer; smoking.

MeSH terms

  • DNA Copy Number Variations*
  • Humans
  • Male
  • Mutation
  • Prostatic Neoplasms* / genetics
  • Smoking / adverse effects
  • Smoking / genetics
  • Tobacco Smoking / adverse effects
  • Tobacco Smoking / genetics