Effect mechanism of iron conversion on adsorption performance of hydrochar derived from coking sludge

Sci Total Environ. 2023 Nov 10:898:165427. doi: 10.1016/j.scitotenv.2023.165427. Epub 2023 Jul 13.

Abstract

In this study, Fe conversion during hydrothermal carbonization (HTC) of coking sludge were investigated, and the effect mechanism of Fe component on the adsorption performance of coking sludge hydrochar (CHC) was explored. The results showed that after HTC treatment, more than 95 % of Fe remained in the CHC. Fe3+ was reduced to Fe2+ by sugar and amino acids. Fe was stabilized during the HTC process and was still predominantly in the Fe manganese oxidation state. The CHC prepared at 270 °C exhibited excellent adsorption capacities for Congo red (CR), tetracycline (TC), and Cr (VI). Their maximum adsorption capacities were 140.85, 147.06, and 19.92 mg/g, respectively. Quantitative adsorption mechanism experiments, XRD and VSM characterization revealed that Fe component played a significant role in adsorption, and CHC with more Fe3O4 exhibited better adsorption capacity. The results of the XPS characterization of CHC before and after adsorption showed that Fe3O4 provided rich Fe adsorption sites on the surface of CHC to strengthen the adsorption efficiency of pollutants through Fe3+/Fe2+ reduction and complexation of Fe-O/N. In addition, the formed Fe3O4 also imparted CHC with magnetic properties (Ms = 4.12 emu/g) to facilitate the subsequent separation and recovery. These results demonstrated that the prepared CHC has great potential for treating actual wastewater containing CR and TC.

Keywords: Adsorption; Coking sludge; Hydrochar; Magnetism.