Mechano Chemical Compatibilization of Polyethylene with Graphite by Means of a Suitable Ester

Polymers (Basel). 2023 Jun 21;15(13):2770. doi: 10.3390/polym15132770.

Abstract

An effective non-covalent compatibilization method for graphite and low-density polyethylene is reported. To obtain this result, pyren-1-yl-stearate (P1S) was synthesized, characterized and mixed with graphite to provide a better dispersion in polyethylene matrix. The P1S improves the dispersion of carbon filler in polyethylene through non-covalent compatibilization: the pyrenyl group gives π-π stacking interactions with graphite and the stearyl chain provides van der Waals interaction with the polymer chain (specifically London dispersion forces). In this study, different P1S/graphite fillers were prepared with a ratio by weight of 90/10 and 50/50, respectively, by using manual and ball-milling mixing. Their stability, interaction and morphology were evaluated through TGA, RX, and SEM. Thermogravimetric analyses showed that ball-milling mixing is more effective than manual mixing in promoting π-π stacking interactions of molecules such as P1S ester containing an alkyl chain and aromatic rings. The role of ball milling is confirmed by X-ray diffraction measurements since it was possible to observe both exfoliation and intercalation phenomena when this technique was used to mix the P1S ester with graphite. SEM analyses of polyethylene containing 1% of the carbon fillers again highlighted the importance of ball milling to promote the interaction of the ester with graphite and, simultaneously, the importance of the alkyl chain in order to achieve polyethylene-graphite compatibilization.

Keywords: TGA analysis; X-ray diffraction; carbon filler; compatibilization; mechanochemistry; non-covalent interactions; polyethylene.

Grants and funding

This research received no external funding.