An Ethyl-Thioglycolate-Functionalized Fe3O4@ZnS Magnetic Fluorescent Nanoprobe for the Detection of Ag+ and Its Applications in Real Water Solutions

Nanomaterials (Basel). 2023 Jul 1;13(13):1992. doi: 10.3390/nano13131992.

Abstract

Ethyl-thioglycolate-modified Fe3O4@ZnS nanoparticles (Fe3O4@ZnS-SH) were successfully prepared using a simple chemical precipitation method. The introduction of ethyl thioglycolate better regulated the surface distribution of ZnS, which can act as a recognition group and can cause a considerable quenching of the fluorescence intensity of the magnetic fluorescent nanoprobe, Fe3O4@ZnS-SH. Benefiting from stable fluorescence emission, the magnetic fluorescent nanoprobe showed a highly selective fluorescent response to Ag+ in the range of 0-400 μM, with a low detection limit of 0.20 μM. The magnetic fluorescent nanoprobe was used to determine the content of Ag+ in real samples. A simple and environmentally friendly approach was proposed to simultaneously achieve the enrichment, detection, and separation of Ag+ and the magnetic fluorescent nanoprobe from an aqueous solution. These results may lead to a wider range of application prospects of Fe3O4 nanomaterials as base materials for fluorescence detection in the environment.

Keywords: Fe3O4; fluorescence; nanoparticle; zinc sulfide.