Study on Morphology, Microstructure and Properties of 6063-T6 Aluminum Alloy Joints in MIG Welding

Materials (Basel). 2023 Jul 7;16(13):4886. doi: 10.3390/ma16134886.

Abstract

In this paper, a metal inert gas (MIG) shielded welding method was used for high-quality welding of 6063-T6 aluminum alloy sheet with a thickness of 2.5 mm. The welding process of MIG welding was accurately simulated and the welding temperature field and thermal cycle curve were calculated using a combination of Gaussian body heat source and double ellipsoidal heat source. As the welding current increased from 75 A to 90 A, the reinforcing phase precipitated under the microstructure of the joint gradually became larger and re-solidified into the body, resulting in a reduction in mechanical properties. When the welding current is 85 A, the pitting resistance of weld forming and weld area reaches its optimum. At this time, the tensile strength of the joint is up to 110.9 MPa, the elongation is up to 16.3% and the Vickers Microhardness is up to 46.9 HV.

Keywords: 6063-T6 aluminum alloy; MIG welding; joint properties; microstructure; numerical simulation.