Pulsed TIG Cladding of a Highly Carbon-, Chromium-, Molybdenum-, Niobium-, Tungsten- and Vanadium-Alloyed Flux-Cored Wire Electrode on Duplex Stainless Steel X2CrNiMoN 22-5-3

Materials (Basel). 2023 Jun 24;16(13):4557. doi: 10.3390/ma16134557.

Abstract

The hardfacing process aims to increase the life span of structural components in the petrochemical, mining, nuclear and automotive industries. During operation, these components are subject to demands of abrasion wear, cavitation erosion and corrosion. Duplex stainless steels are characterized by high mechanical characteristics and corrosion resistance, but poor behavior to abrasive wear and cavitation erosion. The improvement in wear resistance is possible by selecting and depositing a special alloy on the surface using a joining technique that ensures a metallurgical bonding between the layer and the substrate. The experimental investigations carried out in this work demonstrate the ability of the TIG pulsed welding process to produce layers with good functional properties for engineering surfaces. The "Corodur 65" alloy was deposited on a duplex-stainless-steel substrate, X2CrNiMoN22-5-3, using a series of process parameters that allowed for the control of the cooling rate and heat input. The properties of the deposited layers are influenced not only by the chemical composition, but also by the dilution degree value. Since the deposition of layers through the welding operation can be considered as a process with several inputs and outputs, the control of the input parameters in the process aims at finishing the granulation and the structure in the fusion zone as well as limiting the segregation phenomena. The aim of this work is to investigate the microstructural characteristics of the iron-based alloy layer, Corodur 65, deposited via pulsed current TIG welding on duplex X2CrNiMoN22-5-3 stainless-steel substrates.

Keywords: Corodur 65 alloy; duplex stainless steel; pulsed current TIG welding.

Grants and funding

This research received no external funding.