Effects of Rearfoot Eversion on Foot Plantar Pressure and Spatiotemporal Gait Parameters in Adolescent Athletes

Healthcare (Basel). 2023 Jun 25;11(13):1842. doi: 10.3390/healthcare11131842.

Abstract

Background: Foot malalignment can augment the risk of lower-extremity injuries and lead to musculoskeletal disorders. This study aimed to clarify the contribution of rearfoot alignment to plantar pressure distribution and spatiotemporal parameters during gait in healthy adolescent athletes.

Methods: This retrospective study included 39 adolescent athletes who were divided into the rearfoot eversion and control groups according to a leg heel angle of 7°. A total of 78 legs were analyzed (45 and 33 legs in the rearfoot eversion [women, 53.3%] and control groups [women, 48.5%], respectively). Gait was assessed using an in-shoe plantar pressure measuring system and a wearable inertial sensor.

Results: The foot plantar pressure distribution in the hallux was higher in the rearfoot eversion group than that in the control group (p = 0.034). Spatiotemporal parameters showed that the foot pitch angle at heel strike was significantly larger in the rearfoot eversion group than that in the control group (24.5° vs. 21.7°; p = 0.015). Total sagittal range of motion of the ankle during the stance phase of gait was significantly larger in the rearfoot eversion group than that in the control group (102.5 ± 7.1° vs. 95.6 ± 15.8°; p = 0.020). Logistic regression analysis revealed that plantar pressure at the hallux and medial heel and foot pitch angle at heel strike were significantly associated with rearfoot eversion.

Conclusions: Our findings suggest that rearfoot eversion affects the gait patterns of adolescent athletes. Notably, leg heel angle assessment, which is a simple and quick procedure, should be considered as an alternative screening tool for estimating plantar pressure and spatiotemporal gait parameters to prevent sports-related and overuse injuries in adolescent athletes.

Keywords: adolescent athlete; foot morphology; gait; plantar foot pressure; rearfoot eversion; spatiotemporal gait analysis.