Diagnostic Potential of Endometrial Cancer DNA from Pipelle, Pap-Brush, and Swab Sampling

Cancers (Basel). 2023 Jul 6;15(13):3522. doi: 10.3390/cancers15133522.

Abstract

Endometrial cancer (EC) is a major gynecological malignancy with rising morbidity and mortality worldwide. The aim of this study was to explore a safe and readily available sample and a sensitive and effective detection method and its biomarkers for early diagnosis of EC, which is critical for patient prognosis. This study designed a panel targeting variants for EC-related genes, assessed its technical performance by comparing it with whole-exon sequencing, and explored the diagnostic potential of endometrial biopsies using the Pipelle aspirator, cervical samples using the Pap brush, and vaginal specimens using the swab from 38 EC patients and 208 women with risk factors for EC by applying targeted panel sequencing (TPS). TPS produced high-quality data (Q30 > 85% and mapping ratios > 99.35%) and was found to have strong consistency with whole-exome sequencing (WES) in detecting pathogenic mutations (92.11%), calculating homologous recombination deficiency (HRD) scores (r = 0.65), and assessing the microsatellite instability (MSI) status of EC (100%). The sensitivity of TPS in detection of EC is slightly better than that of WES (86.84% vs. 84.21%). Of the three types of samples detected using TPS, endometrial biopsy using the Pipelle aspirator had the highest sensitivity in detection of pathogenic mutations (81.87%) and the best consistency with surgical tumor specimens in MSI (85.16%). About 84% of EC patients contained pathogenic mutations in PIK3CA, PTEN, TP53, ARID1A, CTNNB1, KRAS, and MTOR, suggesting that this small gene set can achieve an excellent pathogenic mutation detection rate in Chinese EC patients. The custom panel combined with ultra-deep sequencing serves as a sensitive method for detecting genetic lesions from endometrial biopsy using the Pipelle aspirator.

Keywords: early diagnosis; endometrial cancer; endometrial specimens; minimally invasive methods; targeted NGS panel.