Inhibition of GSK3β activity alleviates acute liver failure via suppressing multiple programmed cell death

J Inflamm (Lond). 2023 Jul 13;20(1):24. doi: 10.1186/s12950-023-00350-1.

Abstract

Background: Acute liver failure (ALF) is one of the most common life-threatening diseases in adults without previous liver disease. Glycogen synthase kinase 3β (GSK3β) is a serine/threonine protein kinase that is widely distributed in the cells. Inhibition of its activity can inhibit cell death and promote autophagy through various pathways, thus providing a protective effect. In this study, we aimed to investigate the effect on ALF after inhibition of GSK3β and its potential mechanisms.

Methods: D- galactosamine(D-Gal) in combination with lipopolysaccharide(LPS) was used to induce ALF in vitro and in vivo. And then GSK3β inhibitor TDZD-8 was used to explore the protective effect against ALF. After TDZD-8 treatment TUNEL staining and flow techniques were used to detect the proportion of apoptosis in liver tissues and cells respectively, while western blotting and immunofluorescence assays were performed to detect the expression levels of apoptosis, pyroptosis and necroptosis-related proteins in tissues and cells. In addition, western blotting was performed to explore the specific mechanism of hepatoprotective effect after GSK3β inhibition to detect the expression levels of TAK1, TRAF6 and HDAC3 after TRAF6 and HDAC3 inhibition alone. The co-localization of TRAF6 and HDAC3 in vitro was detected by immunofluorescence, while the interaction between TRAF6 and HDAC3 was detected by immunoprecipitation assay.

Results: Both in vivo and in vitro experiments, GSK3β inhibitor TDZD-8 can significantly alleviate the progression of ALF. Inhibition of GSK3β activity could significantly reduce the level of hepatocyte apoptosis, pyroptosis, necroptosis and improve liver dysfunction and tissue damage. Furthermore, we found that hepatocyte TAK1 and TRAF6 levels decreased and HDAC3 levels increased in ALF, whereas inhibition of GSK3β upregulated TAK1 and TRAF6 levels and decreased HDAC3 expression.

Conclusion: GSK3β inhibitor TDZD-8 can prevent the progression of ALF, and its action may involve the TRAF6/HDAC3/TAK1 pathway.

Keywords: Acute liver failure; GSK3β; HDAC3; Programmed cell death; TAK1; TRAF6.