Design and development of opto-electrochemical biosensing devices for diagnosing chronic kidney disease

Biotechnol Bioeng. 2023 Nov;120(11):3116-3136. doi: 10.1002/bit.28490. Epub 2023 Jul 13.

Abstract

Chronic kidney disease (CKD) is emerging as one of the major causes of the increase in mortality rate and is expected to become 5th major cause by 2050. Many studies have shown that it is majorly related to various risk factors, and thus becoming one of the major health issues around the globe. Early detection of renal disease lowers the overall burden of disease by preventing individuals from developing kidney impairment. Therefore, diagnosis and prevention of CKD are becoming the major challenges, and in this situation, biosensors have emerged as one of the best possible solutions. Biosensors are becoming one of the preferred choices for various diseases diagnosis as they provide simpler, cost-effective and precise methods for onsite detection. In this review, we have tried to discuss the globally developed biosensors for the detection of CKD, focusing on their design, pattern, and applicability in real samples. Two major classifications of biosensors based on transduction systems, that is, optical and electrochemical, for kidney disease have been discussed in detail. Also, the major focus is given to clinical biomarkers such as albumin, creatinine, and others related to kidney dysfunction. Furthermore, the globally developed sensors for the detection of CKD are discussed in tabulated form comparing their analytical performance, response time, specificity as well as performance in biological fluids.

Keywords: Kidney dysfunction; biosensing device; clinical biomarkers; electrochemical; nanobioengineering; optical.

Publication types

  • Review