[Effects of Straw Removal Measure on Soil Cd Bioavailability and Rice Cd Accumulation]

Huan Jing Ke Xue. 2023 Jul 8;44(7):4109-4118. doi: 10.13227/j.hjkx.202207005.
[Article in Chinese]

Abstract

A field experiment was conducted in a lightly Cd-contaminated rice field in Ningxiang City, Hunan Province, to study the effects of straw removal measures on the soil Cd bioavailability and rice Cd accumulation. The results showed that:① two consecutive seasons of straw removal measures (T1-T4 treatments) effectively increased soil pH by 0.04-0.58 units, reduced soil organic matter by 0.68%-25.87%, and reduced the Cd content of rhizosphere soil by 3.76%-12.78%. ② The proportions of Cd in the acid-extractable fraction and oxidizable fraction decreased, and the proportion of Cd in the residual fraction increased. Furthermore, straw removal measures significantly reduced the bioavailability of Cd in rhizosphere soil, and the Cd contents in TCLP, DTPA, and CaCl2 extracts all significantly decreased compared with those in CK. ③ The straw removal measure could significantly reduce the content of DOC and Cd in soil pore water; and the contents of Cd in soil pore water decreased by 4.54%-40.00% and 2.75%-67.34% under the straw removal measure (T1-T4) for two consecutive seasons, respectively, indicating that DOC was one of the key factors affecting the content of Cd in soil pore water. ④ Two consecutive straw removal measures (T1-T4) reduced the accumulation of Cd in different rice tissues, among which, under the treatment of all straw and root removal (T4), the Cd contents of brown rice in late rice planting in 2020 and early rice planting in 2021 decreased by 18.52% and 39.69%, respectively. Therefore, full or partial removal of straw in Cd-contaminated rice fields is a powerful measure to reduce the risk of exceeding Cd levels in brown rice.

Keywords: Cd fraction in soil; Cd-contaminated soil; bioavailability; dissolved organic carbon (DOC); rice; straw removal measure.

Publication types

  • English Abstract

MeSH terms

  • Biological Availability
  • Cadmium
  • Oryza*
  • Soil
  • Water

Substances

  • Cadmium
  • Soil
  • Water