Self-assembly of Au@AgNR along M13 framework: A SERS nanocarrier for bacterial detection and killing

Biosens Bioelectron. 2023 Oct 1:237:115519. doi: 10.1016/j.bios.2023.115519. Epub 2023 Jul 5.

Abstract

Self-assembled functional nanomaterials with electromagnetic hot spots are crucial and highly desirable in surface-enhanced Raman scattering (SERS). Due to its versatile biological scaffold, the M13 phage has been employed to produce novel nano-building blocks and devices. In this study, we propose a novel M13 phage-based SERS nanocarrier, that utilizes the pVIII capsid in M13 to conjugate Au@Ag core-shell nanorod (Au@AgNR) with linker carboxy-PEG-thiol (M13-Au@AgNR) and the pIII capsid to specifically target Escherichia coli (E. coli). The M13-Au@AgNR@DTTC (3,3'- diethylthiocarbocyanine iodide) SERS probe was used to detect E. coli in a concentration range of 6 to 6 × 105 cfu/mL, achieving a limit of detection (LOD) of 0.5 cfu/mL. The proposed SERS platform was also tested in real samples, showing good recoveries (92%-114.3%) and a relative standard deviation (RSD) of 1.2%-4.7%. Furthermore, the system demonstrated high antibacterial efficiency against E. coli, approximately 90%, as measured by the standard plate-count method. The investigation provides an effective strategy for in vitro bacteria detection and inactivation.

Keywords: Antibacterial efficiency; Bacteria; M13 phage; Surface-enhanced Raman scattering (SERS).