Long noncoding RNA LOC646029 functions as a ceRNA to suppress ovarian cancer progression through the miR-627-3p/SPRED1 axis

Front Med. 2023 Oct;17(5):924-938. doi: 10.1007/s11684-023-1004-z. Epub 2023 Jul 12.

Abstract

Long noncoding RNAs (lncRNAs) play a crucial regulatory role in the development and progression of multiple cancers. However, the potential mechanism by which lncRNAs affect the recurrence and metastasis of ovarian cancer remains unclear. In the current study, the lncRNA LOC646029 was markedly downregulated in metastatic ovarian tumors compared with primary tumors. Gain- and loss-of-function assays demonstrated that LOC646029 inhibits the proliferation, invasiveness, and metastasis of ovarian cancer cells in vivo and in vitro. Moreover, the downregulation of LOC646029 in metastatic ovarian tumors was strongly correlated with poor prognosis. Mechanistically, LOC646029 served as a miR-627-3p sponge to promote the expression of Sprouty-related EVH1 domain-containing protein 1, which is necessary for suppressing tumor metastasis and inhibiting KRAS signaling. Collectively, our results demonstrated that LOC646029 is involved in the progression and metastasis of ovarian cancer, which may be a potential prognostic biomarker.

Keywords: SPRED1; lncRNA LOC646029; metastasis; microRNA 627-3p; ovarian cancer.

MeSH terms

  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism
  • Cell Line, Tumor
  • Cell Movement / genetics
  • Cell Proliferation / genetics
  • Female
  • Gene Expression Regulation, Neoplastic
  • Humans
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Ovarian Neoplasms* / genetics
  • RNA, Competitive Endogenous
  • RNA, Long Noncoding* / genetics
  • RNA, Long Noncoding* / metabolism

Substances

  • MicroRNAs
  • RNA, Long Noncoding
  • RNA, Competitive Endogenous
  • SPRED1 protein, human
  • Adaptor Proteins, Signal Transducing
  • MIRN627 microRNA, human