Coal fly ash application as an eco-friendly approach for modulating the growth, yield, and biochemical constituents of Withania somnifera L. plants

Environ Sci Pollut Res Int. 2023 Aug;30(37):87958-87980. doi: 10.1007/s11356-023-28318-x. Epub 2023 Jul 11.

Abstract

The solid waste known as fly ash, which is produced when coal is burned in thermal power plants, is sustainably used in agriculture. It is an excellent soil supplement for plant growth and development since it contains some desired nutrients (macro and micro), as well as being porous. The present study was done to evaluate the effect of different fly ash levels on Withania somnifera. The present study aimed to assess the impact of various fly ash (FA) concentrations on growth, yield, photosynthetic pigments, biochemical parameters, and cell viability of W. somnifera. The results showed that FA enhanced physical and chemical properties of soil like pH, electric conductivity, porosity, water-holding capacity, and nutrients. The low doses of FA-amended soil (15%) significantly increased the shoot length (36%), root length (24.5%), fresh weight of shoots and roots (107.8 and 50.6%), dry weight of shoots and roots (61.9 and 47.1%), number of fruits (70.4%), carotenoid (43%), total chlorophyll (44.3%), relative water content (109.3%), protein content (20.4%), proline content (110.3%), total phenols (116.1%), nitrogen (20.3%), phosphorus (16.9%), and potassium (26.4%). On the other hand, the higher doses, i.e., 25% of fly ash showed a negative effect on all the above parameters and induced oxidative stress by increasing lipid peroxidation (33.1%) and hydrogen peroxide (102.0%) and improving the activities of antioxidant enzymes and osmolytes. Compared to the control plants, the plants growing in soil enriched with 15 and 25% fly ash had larger stomata pores when examined using a scanning electron microscope. In addition, according to a confocal microscopic analysis of the roots of W. somnifera, higher fly ash concentrations caused membrane damage, as evidenced by an increase in the number of stained nuclei. Moreover, several functional groups and peaks of the biomolecules represented in the control and 15% of fly ash were alcohols, phenols, allenes, ketenes, isocynates, and hydrocarbons. Gas chromatography-mass spectrometry analysis of the methanol extract of W. somnifera leaves cultivated in soil amended with 15% fly ash shows the presence of 47 bioactive compounds. The most abundant compounds in the methanol extract were cis-9-hexadecenal (22.33%), n-hexadecanoic acid (9.68%), cinnamic acid (6.37%), glycidyl oleate (3.88%), nonanoic acid (3.48%), and pyranone (3.57%). The lower concentrations of FA (15%) can be used to enhance plant growth and lower the accumulation of FA that results in environmental pollution.

Keywords: Antioxidant enzymes; Biochemical compounds; Cell viability; FTIR; GC–MS; Growth; Osmolytes.

MeSH terms

  • Coal / analysis
  • Coal Ash / analysis
  • Methanol / analysis
  • Plant Extracts / analysis
  • Soil / chemistry
  • Soil Pollutants* / analysis
  • Withania*

Substances

  • Coal Ash
  • Methanol
  • Coal
  • Soil
  • Plant Extracts
  • Soil Pollutants