Environmental Profile of a Novel High-Amylose Bread Wheat Fresh Pasta with Low Glycemic Index

Foods. 2022 Oct 13;11(20):3199. doi: 10.3390/foods11203199.

Abstract

To improve glycemic health, a high-amylose bread wheat flour fresh pasta characterized by a low in vitro glycemic index (GI) and improved post-prandial glucose metabolism was previously developed. In this study, well-known life cycle analysis software was used in accordance with the PAS 2050 and mid- and end-point ReCiPe 2016 standard methods to assess, respectively, its carbon footprint and overall environmental profile, as weighted by a hierarchical perspective. Even if both eco-indicators allowed the identification of the same hotspots (i.e., high-amylose bread wheat cultivation and consumer use of fresh pasta), the potential consumer of low-GI foods should be conscious that the novel low-GI fresh pasta had a greater environmental impact than the conventional counterpart made of common wheat flour, their corresponding carbon footprint or overall weighted damage score being 3.88 and 2.51 kg CO2e/kg or 184 and 93 mPt/kg, respectively. This was mainly due to the smaller high-amylose bread wheat yield per hectare. Provided that its crop yield was near to that typical for common wheat in Central Italy, the difference between both eco-indicators would be not greater than 9%. This confirmed the paramount impact of the agricultural phase. Finally, use of smart kitchen appliances would help to relieve further the environmental impact of both fresh pasta products.

Keywords: PAS 2050 and ReCiPe 2016 standard methods; carbon footprint; egg-free fresh pasta; environmental profile; glycemic index; high amylose fresh pasta; mitigation actions; overall weighted damage score.