Clinical Pharmacology and Translational Considerations in the Development of CRISPR-Based Therapies

Clin Pharmacol Ther. 2023 Sep;114(3):591-603. doi: 10.1002/cpt.3000. Epub 2023 Jul 25.

Abstract

Genome editing holds the potential for curative treatments of human disease, however, clinical realization has proven to be a challenging journey with incremental progress made up until recently. Over the last decade, advances in clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems have provided the necessary breakthrough for genome editing in the clinic. The progress of investigational CRISPR therapies from bench to bedside reflects the culmination of multiple advances occurring in parallel, several of which intersect with clinical pharmacology and translation. Directing the CRISPR therapy to the intended site of action has necessitated novel delivery platforms, and this has resulted in special considerations for the complete characterization of distribution, metabolism, and excretion, as well as immunogenicity. Once at the site of action, CRISPR therapies aim to make permanent alterations to the genome and achieve therapeutically relevant effects with a single dose. This fundamental aspect of the mechanism of action for CRISPR therapies results in new considerations for clinical translation and dose selection. Early advances in model-informed development of CRISPR therapies have incorporated key facets of the mechanism of action and have captured hallmark features of clinical pharmacokinetics and pharmacodynamics from phase I investigations. Given the recent emergence of CRISPR therapies in clinical development, the landscape continues to evolve rapidly with ample opportunity for continued innovation. Here, we provide a snapshot of selected topics in clinical pharmacology and translation that has supported the advance of systemically administered in vivo and ex vivo CRISPR-based investigational therapies in the clinic.

Publication types

  • Review

MeSH terms

  • CRISPR-Cas Systems* / genetics
  • Gene Editing / methods
  • Humans
  • Pharmacology, Clinical*