NiFe-layered double hydroxide/CoP2@MnP heterostructures of clustered flower nanowires on MXene-modified nickel foam for overall water-splitting

J Colloid Interface Sci. 2023 Dec:651:1054-1069. doi: 10.1016/j.jcis.2023.07.019. Epub 2023 Jul 6.

Abstract

Exploiting efficient and economical electrocatalysts is indispensable to promoting the sluggish kinetics of overall water-splitting. Herein, we designed a phosphate reaction and two-step hydrothermal method to construct a 3D porous clustered flower-like heterogeneous structure of NiFe-layered double hydroxide (NiFe) and CoP2@MnP (CMP) grown in-situ on MXene-modified nickel foam (NF) substrate (denoted as NiFe/CMP/MX), with favorable kinetics. Density functional theory calculations (DFT) demonstrate that the self-driven transfer of heterojunction charges causes electron redistribution of the catalyst, and optimizes the electron transfer rate of the active site and the d-band center near the Fermi level, thereby reducing the adsorption energy of H and O reaction intermediates (H*, OH*, OOH*). As expected, the combination of CMP and NiFe with naturally conductive MXene forms a strong chemical and electron synergistic effect, which enables the synthesized NiFe/CMP/MX heterogeneous structure exhibits good activity for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) with a low overpotential of 200 mV and 126 mV at 10 mA cm-2, respectively. Furthermore, the overpotential of 1.58 V is enough to drive a current density of 10 mA cm-2 in a two-electrode configuration, which is better than noble metals (RuO2(+)//Pt/C(-)) (1.68 V).

Keywords: Clustered flower nanowires; Heterostructures; MXene; Overall water-splitting.