Host plant recognition by two odorant-binding proteins in Rhynchophorus ferrugineus (Coleoptera: Curculionidae)

Pest Manag Sci. 2023 Nov;79(11):4521-4534. doi: 10.1002/ps.7654. Epub 2023 Jul 24.

Abstract

Background: Rhynchophorus ferrugineus, the red palm weevil (RPW), is a key pest that attacks many economically important palm species and that has evolved a sensitive and specific olfactory system to seek palm hosts. Odorant-binding proteins (OBPs) not only play crucial roles in its olfactory perception process but are also important molecular targets for the development of new approaches for pest management.

Results: Analysis of the tissue expression profiles of RferOBP8 and RferOBP11 revealed that these two Rhynchophorus ferrugineus odorant binding proteins (RferOBPs) exhibited high expression in the antennae and showed sexual dimorphism. We analyzed the volatiles of seven host plants by gas chromatography-mass spectrometry and screened 13 potential ligands by molecular docking. The binding affinity of two recombinant OBPs to aggregation pheromones and 13 palm odorants was tested by fluorescence competitive binding assays. The results revealed that eight tested palm volatiles and ferrugineol have high binding affinities with RferOBP8 or RferOBP11. Behavioral trials showed that these eight odor compounds could elicit an attraction response in adult RPW. RNA interference analysis indicated that the reduction in the expression levels of the two RferOBPs led to a decrease in behavioral responses to these volatiles.

Conclusion: These results suggest that RferOBP8 and RferOBP11 are involved in mediating the responses of RPW to palm volatiles and to aggregation pheromones and may play important roles in RPW host-seeking. This study also provides a theoretical foundation for the promising application of novel molecular targets in the development of new behavioral interference strategies for RPW management in the future. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Keywords: RNAi; behavioral assay; fluorescence competitive binding; odorant-binding protein; red palm weevil; volatile organic compounds.