Estimation of Spatio-Temporal Parameters of Gait and Posture of Visually Impaired People Using Wearable Sensors

Sensors (Basel). 2023 Jun 14;23(12):5564. doi: 10.3390/s23125564.

Abstract

In rehabilitating orientation and mobility (O&M) for visually impaired people (VIP), the measurement of spatio-temporal gait and postural parameters is of specific interest for rehabilitators to assess performance and improvements in independent mobility. In the current practice of rehabilitation worldwide, this assessment is carried out in people with estimates made visually. The objective of this research was to propose a simple architecture based on the use of wearable inertial sensors for quantitative estimation of distance traveled, step detection, gait velocity, step length and postural stability. These parameters were calculated using absolute orientation angles. Two different sensing architectures were tested for gait according to a selected biomechanical model. The validation tests included five different walking tasks. There were nine visually impaired volunteers in real-time acquisitions, where the volunteers walked indoor and outdoor distances at different gait velocities in their residences. The ground truth gait characteristics of the volunteers in five walking tasks and an assessment of the natural posture during the walking tasks are also presented in this article. One of the proposed methods was selected for presenting the lowest absolute error of the calculated parameters in all of the traveling experimentations: 45 walking tasks between 7 and 45 m representing a total of 1039 m walked and 2068 steps; the step length measurement was 4.6 ± 6.7 cm with a mean of 56 cm (11.59 Std) and 1.5 ± 1.6 relative error in step count, which compromised the distance traveled and gait velocity measurements, presenting an absolute error of 1.78 ± 1.80 m and 7.1 ± 7.2 cm/s, respectively. The results suggest that the proposed method and its architecture could be used as a tool for assistive technology designed for O&M training to assess gait parameters and/or navigation, and that a sensor placed in the dorsal area is sufficient to detect noticeable postural changes that compromise heading, inclinations and balancing in walking tasks.

Keywords: O&M; inertial sensors; postural assessment; rehabilitation.

MeSH terms

  • Gait*
  • Humans
  • Posture
  • Volunteers
  • Walking
  • Wearable Electronic Devices*