Fusion of Infrared and Visible Images Based on Three-Scale Decomposition and ResNet Feature Transfer

Entropy (Basel). 2022 Sep 24;24(10):1356. doi: 10.3390/e24101356.

Abstract

Image fusion technology can process multiple single image data into more reliable and comprehensive data, which play a key role in accurate target recognition and subsequent image processing. In view of the incomplete image decomposition, redundant extraction of infrared image energy information and incomplete feature extraction of visible images by existing algorithms, a fusion algorithm for infrared and visible image based on three-scale decomposition and ResNet feature transfer is proposed. Compared with the existing image decomposition methods, the three-scale decomposition method is used to finely layer the source image through two decompositions. Then, an optimized WLS method is designed to fuse the energy layer, which fully considers the infrared energy information and visible detail information. In addition, a ResNet-feature transfer method is designed for detail layer fusion, which can extract detailed information such as deeper contour structures. Finally, the structural layers are fused by weighted average strategy. Experimental results show that the proposed algorithm performs well in both visual effects and quantitative evaluation results compared with the five methods.

Keywords: ResNet-feature transfer; infrared and visible image fusion; optimized WLS; three-scale decomposition; weighted average strategy.