Endothelial cell CD36 regulates membrane ceramide formation, exosome fatty acid transfer and circulating fatty acid levels

Nat Commun. 2023 Jul 7;14(1):4029. doi: 10.1038/s41467-023-39752-3.

Abstract

Endothelial cell (EC) CD36 controls tissue fatty acid (FA) uptake. Here we examine how ECs transfer FAs. FA interaction with apical membrane CD36 induces Src phosphorylation of caveolin-1 tyrosine-14 (Cav-1Y14) and ceramide generation in caveolae. Ensuing fission of caveolae yields vesicles containing FAs, CD36 and ceramide that are secreted basolaterally as small (80-100 nm) exosome-like extracellular vesicles (sEVs). We visualize in transwells EC transfer of FAs in sEVs to underlying myotubes. In mice with EC-expression of the exosome marker emeraldGFP-CD63, muscle fibers accumulate circulating FAs in emGFP-labeled puncta. The FA-sEV pathway is mapped through its suppression by CD36 depletion, blocking actin-remodeling, Src inhibition, Cav-1Y14 mutation, and neutral sphingomyelinase 2 inhibition. Suppression of sEV formation in mice reduces muscle FA uptake, raises circulating FAs, which remain in blood vessels, and lowers glucose, mimicking prominent Cd36-/- mice phenotypes. The findings show that FA uptake influences membrane ceramide, endocytosis, and EC communication with parenchymal cells.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • CD36 Antigens / genetics
  • CD36 Antigens / metabolism
  • Ceramides / metabolism
  • Endothelial Cells / metabolism
  • Exosomes* / metabolism
  • Fatty Acids* / metabolism
  • Mice
  • Muscle Fibers, Skeletal / metabolism

Substances

  • Fatty Acids
  • Ceramides
  • CD36 Antigens