Unravelling the nexus: Towards a unified model of development, ageing, and cancer

Biosystems. 2023 Sep:231:104966. doi: 10.1016/j.biosystems.2023.104966. Epub 2023 Jul 6.

Abstract

This work presents a comprehensive model that aims to unify our understanding of embryogenesis, ageing, and cancer. While there have been previous attempts to construct models separately for two of these phenomena (such as embryogenesis and cancer, ageing and cancer), models encompassing all three are relatively scarce, if not entirely absent. The model's most notable feature is the presence of driver cells throughout the body, which may correspond to Spemann's organisers. These driver cells play a vital role in propelling development as they dynamically emerge from non-driver cells and inhabit specialised niches. Remarkably, this continuous process persists throughout an organism's entire lifespan, signifying that development unfolds from conception to the end of life. Driver cells orchestrate change events through the induction of distinctive epigenetic patterns of gene activation. Events occurring at young age drive development, are subject to high evolutionary pressure and hence carefully optimised. Events occurring after reproduction age are subject to decreasing evolutionary pressure: for this reason, such events are "pseudorandom" -deterministic but erratic. Some of these events lead to age-related benign conditions, such as gray hair. Some lead to serious age-related diseases, such as diabetes and Alzheimer's disease. Furthermore, some of these events might perturb epigenetically key pathways involved in driver activation and formation, leading to cancer. In our model, this driver cell-based mechanism represents the backbone of multicellular biology: understanding and correcting its functioning may give the chance to solve a wide range of conditions at once.

Keywords: Ageing; Cancer; Embryogenesis.

MeSH terms

  • Aging* / genetics
  • Embryonic Development / genetics
  • Epigenomics
  • Fertilization
  • Humans
  • Neoplasms* / genetics