Atomic Engineering Modulates Oxygen Reduction of Hollow Carbon Matrix Confined Single Metal-Nitrogen Sites for Zinc-Air Batteries

Small. 2023 Nov;19(44):e2301327. doi: 10.1002/smll.202301327. Epub 2023 Jul 7.

Abstract

The systematical understanding of metal-dependent activity in electrocatalyzing oxygen reduction reaction (ORR), a vital reaction with sluggish kinetics for zinc-air batteries, remains quite unclear. An atomic and spatial engineering modulating ORR activity over hollow carbon quasi-sphere (HCS) confined in a series of single M-N (M = Cu, Mn, Ni) sites is reported here. Based on the theoretical prediction and experimental validation, Cu-N4 site with the lowest overpotential shows a better ORR kinetics than Mn-N4 and Ni-N4 . The ORR activity of single-atom Cu center can be further improved by decreasing the coordination number of N to two, namely Cu-N2 , due to the enhancement of electrons with lower coordination structure. Benefitting from the unique spatial confinement effect of the HCS structure in modulating electronic feature of active sites, the Cu-N2 site confined in HCS also delivers highly improved ORR kinetics and activity relative to that on planner graphene. Additionally, the best catalyst holds excellent promise in the application of zinc-air batteries. The findings will pave a new way to atomically and electronically tune active sites with high efficiency for other single-atom catalysts.

Keywords: M-N-C; electrocatalysis; oxygen reduction reaction; single atom sites; spatial confinement.