Plug-flow hydrolysis with lignocellulosic residues: effect of hydraulic retention time and thin-sludge recirculation

Biotechnol Biofuels Bioprod. 2023 Jul 6;16(1):111. doi: 10.1186/s13068-023-02363-7.

Abstract

Background: Two parallel plug-flow reactors were successfully applied as a hydrolysis stage for the anaerobic pre-digestion of maize silage and recalcitrant bedding straw (30% and 66% w/w) under variations of the hydraulic retention time (HRT) and thin-sludge recirculation.

Results: The study proved that the hydrolysis rate profits from shorter HRTs while the hydrolysis yield remained similar and was limited by a low pH-value with values of 264-310 and 180-200 gO2 kgVS-1 for 30% and 66% of bedding straw correspondingly. Longer HRT led to metabolite accumulation, significantly increased gas production, a higher acid production rate and a 10-18% higher acid yield of 78 gSCCA kgVS-1 for 66% of straw. Thin-sludge recirculation increased the acid yield and stabilized the process, especially at a short HRT. Hydrolysis efficiency can thus be improved by shorter HRT, whereas the acidogenic process performance is increased by longer HRT and thin-sludge recirculation. Two main fermentation patterns of the acidogenic community were found: above a pH-value of 3.8, butyric and acetic acid were the main products, while below a pH-value of 3.5, lactic, acetic and succinic acid were mainly accumulating. During plug-flow digestion with recirculation, at low pH-values, butyric acid remained high compared to all other acids. Both fermentation patterns had virtually equal yields of hydrolysis and acidogenesis and showed good reproducibility among the parallel reactor operation.

Conclusions: The suitable combination of HRT and thin-sludge recirculation proved to be useful in a plug-flow hydrolysis as primary stage in biorefinery systems with the benefits of a wider feedstock spectrum including feedstock with cellulolytic components at an increased process robustness against changes in the feedstock composition.

Keywords: Anaerobic digestion; Hydraulic retention time; Microbial hydrolysis; Plug-flow reactor; Recirculation.