Xanthine oxidoreductase gene polymorphisms are associated with high risk of sepsis and organ failure

Respir Res. 2023 Jul 6;24(1):177. doi: 10.1186/s12931-023-02481-8.

Abstract

Background: Sepsis and associated organ failures confer substantial morbidity and mortality. Xanthine oxidoreductase (XOR) is implicated in the development of tissue oxidative damage in a wide variety of respiratory and cardiovascular disorders including sepsis and sepsis-associated acute respiratory distress syndrome (ARDS). We examined whether single nucleotide polymorphisms (SNPs) in the XDH gene (encoding XOR) might influence susceptibility to and outcome in patients with sepsis.

Methods: We genotyped 28 tag SNPs in XDH gene in the CELEG cohort, including 621 European American (EA) and 353 African American (AA) sepsis patients. Serum XOR activity was measured in a subset of CELEG subjects. Additionally, we assessed the functional effects of XDH variants utilizing empirical data from different integrated software tools and datasets.

Results: Among AA patients, six intronic variants (rs206805, rs513311, rs185925, rs561525, rs2163059, rs13387204), in a region enriched with regulatory elements, were associated with risk of sepsis (P < 0.008-0.049). Two out of six SNPs (rs561525 and rs2163059) were associated with risk of sepsis-associated ARDS in an independent validation cohort (GEN-SEP) of 590 sepsis patients of European descent. Two common SNPs (rs1884725 and rs4952085) in tight linkage disequilibrium (LD) provided strong evidence for association with increased levels of serum creatinine (Padjusted<0.0005 and 0.0006, respectively), suggesting a role in increased risk of renal dysfunction. In contrast, among EA ARDS patients, the missense variant rs17011368 (I703V) was associated with enhanced mortality at 60-days (P < 0.038). We found higher serum XOR activity in 143 sepsis patients (54.5 ± 57.1 mU/mL) compared to 31 controls (20.9 ± 12.4 mU/mL, P = 1.96 × 10- 13). XOR activity was associated with the lead variant rs185925 among AA sepsis patients with ARDS (P < 0.005 and Padjusted<0.01). Multifaceted functions of prioritized XDH variants, as suggested by various functional annotation tools, support their potential causality in sepsis.

Conclusions: Our findings suggest that XOR is a novel combined genetic and biochemical marker for risk and outcome in patients with sepsis and ARDS.

Keywords: Acute respiratory distress syndrome; Biomarker; Haplotype; Sepsis; Single nucleotide polymorphism; Xanthine oxidoreductase.

MeSH terms

  • Genotype
  • Humans
  • Polymorphism, Single Nucleotide / genetics
  • Respiratory Distress Syndrome*
  • Sepsis* / complications
  • Sepsis* / diagnosis
  • Sepsis* / genetics
  • Xanthine Dehydrogenase / genetics

Substances

  • Xanthine Dehydrogenase