Proton-self-doped PANI@CC as the cathode for high-performance aqueous zinc-ion battery

J Colloid Interface Sci. 2023 Nov 15;650(Pt A):322-329. doi: 10.1016/j.jcis.2023.06.208. Epub 2023 Jul 1.

Abstract

Aqueous zinc-ion batteries (AZIB) have several advantages such as low cost, large theoretical capacity and good safety. However, the development of polyaniline (PANI) cathode materials has been limited by slow diffusion kinetics. Herein, proton-self-doped polyaniline@carbon cloth (CC) (PANI@CC) was prepared via in-situ polymerization, where polyaniline was deposited on an activated carbon cloth. The PANI@CC cathode exhibits a high specific capacity of 234.3 mA h g-1 at 0.5 A g-1, and excellent rate performance, delivering a capacity of 143 mA h g-1 at 10 A g-1. Furthermore, the reversible redox conversion during the charge-discharge process was studied using ex-situ X-ray photoelectron spectroscopy (XPS) and ex-situ Raman spectra. The results show that the excellent performance of the PANI@CC battery can be attributed to the formation of a conductive network between the carbon cloth and polyaniline. Also, a mixing mechanism involving insertion/extraction of Zn2+/H+ and a double-ion process is proposed. PANI@CC electrode is a novel idea for developing high-performance batteries.

Keywords: Aqueous zinc ion battery; Carbon cloth; In-situ polymerization; Mixing mechanism; Polyaniline.