Ultrasonic defect detection of high-density polyethylene pipe materials using FIR filtering and block-wise singular value decomposition

Ultrasonics. 2023 Sep:134:107088. doi: 10.1016/j.ultras.2023.107088. Epub 2023 Jun 28.

Abstract

Condition monitoring of high-density polyethylene (HDPE) pipes used for fluid and gas transfer is important for the safety of energy conservation and the environment. Ultrasonic phased array imaging methods provide a solution to detect and assess defects in HDPE pipes. However, ultrasonic bulk waves propagating in these viscoelastic media are strongly attenuated, resulting in reduced signal amplitude. In this study, a linear-phase Finite Impulse Response (FIR) filter is used to remove unwanted frequency components from the measured ultrasonic signals to improve the signal-to-noise ratio before applying the imaging algorithm of the total focusing method (TFM). Building upon this, a block-wise singular value decomposition (SVD) technique, which can adaptively determine the singular value cutoff threshold based on each block in the whole TFM image, is used to enhance the obtained TFM image quality. The performance of the combination of FIR filtering and block-wise SVD technique is validated by experimental data of HDPE pipe materials. Results demonstrate that the proposed approach generates good images to provide the detection and characterization of side-drilled holes in HDPE pipe materials.

Keywords: Block-wise singular value decomposition; Defect detection; FIR filter; Ultrasonic imaging.