Optical trapping of microparticles with two tilted-focused laser beams

Rev Sci Instrum. 2023 Jul 1;94(7):073201. doi: 10.1063/5.0155049.

Abstract

We present an optical method for the manipulation of microparticles using two tilted-focused beams. First, the action on the microparticles is studied with a single tilted-focused beam. The beam is used to drive the directional motion of a dielectric particle. When the optical scattering force is larger than the optical gradient force, the particle is pushed to the tilted side of the optical axis by the optical force. Second, two tilted-focused beams with the same power and complementary tilt angles are used to assemble an optical trap. The trap can be used to realize the optical trapping of the dielectric particles and opto-thermal trapping of the light absorbing particles. The trapping mechanism is the balance of the forces exerted on the particles, including the optical scattering force, optical gradient force, gravity, and thermal gradient force. The trap center is away from the focal spots, which effectively prevents the laser beam from being focused on the trapped object.

MeSH terms

  • Lasers*
  • Motion
  • Optical Tweezers*