SARS-CoV-2 main protease mutation analysis via a kinematic method

Proteins. 2023 Nov;91(11):1496-1509. doi: 10.1002/prot.26543. Epub 2023 Jul 5.

Abstract

The Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. COVID-19 continues to cause millions of deaths globally in part due to immune-evading mutations. SARS-CoV-2 main protease (Mpro) is an important enzyme for viral replication and potentially an effective drug target. Mutations affect the dynamics of enzymes and thereby their activity and ability to bind ligands. Here, we use kinematic flexibility analysis (KFA) to identify how mutations and ligand binding changes the conformational flexibility of Mpro. KFA decomposes macromolecules into regions of different flexibility near-instantly from a static structure, allowing conformational dynamics analysis at scale. Altogether, we analyzed 47 mutation sites across 69 Mpro-ligand complexes resulting in more than 3300 different structures which includes 69 mutated structures with all 47 sites mutated simultaneously and 3243 single residue mutated structures. We found that mutations generally increased the conformational flexibility of the protein. Understanding the impact of mutations on the flexibility of Mpro is essential for identifying potential drug targets in the treatment of SARS-CoV-2. Further studies in this area can offer valuable insights into the mechanisms of molecular recognition.

Keywords: SARS-CoV-2 Mpro; kinematic method; mutation analysis.