Controlled Synthesis and Accurate Doping of Wafer-Scale 2D Semiconducting Transition Metal Dichalcogenides

Adv Mater. 2023 Jul 5:e2305115. doi: 10.1002/adma.202305115. Online ahead of print.

Abstract

2D semiconducting transition metal dichalcogenide (TMDCs) possess atomically thin thickness, a dangling-bond-free surface, flexible band structure, and silicon-compatible feature, making them one of the most promising channels for constructing state-of-the-art field-effect transistors in the post-Moore's era. However, the existing 2D semiconducting TMDCs fall short of meeting the industry criteria for practical applications in electronics due to their small domain size and the lack of an effective approach to modulate intrinsic physical properties. Therefore, it is crucial to prepare and dope 2D semiconducting TMDCs single crystals with wafer size. In this review, the up-to-date progress regarding the wafer-scale growth of 2D semiconducting TMDC polycrystalline and single-crystal films is systematically summarized. The domain orientation control of 2D TMDCs and the seamless stitching of unidirectionally aligned 2D islands by means of substrate design are proposed. In addition, the accurate and uniform doping of 2D semiconducting TMDCs and the effect on electronic device performances are also discussed. Finally, the dominating challenges pertaining to the enhancement of the electronic device performances of TMDCs are emphasized, and further development directions are put forward. This review provides a systematic and in-depth summary of high-performance device applications of 2D semiconducting TMDCs.

Keywords: accurate doping; controlled synthesis; electronic devices; semiconducting transition metal dichalcogenides; wafer-scale materials.

Publication types

  • Review