Effects of stabilizer magnesium nirate on CMIT/MIT-induced respiratory toxicity

Toxicol Res. 2023 Mar 10;39(3):373-382. doi: 10.1007/s43188-023-00170-8. eCollection 2023 Jul.

Abstract

Despite a humidifier disinfectant (HD) product containing chloromethylisothiazolinone (CMIT) and methylisothiazolinone (MIT) with approximately 22% magnesium nitrate as a stabilizer, no report on the effects of magnesium nitrate on the respiratory toxicity of CMIT/MIT is available. In this study, Kathon CG and Proclin 200, containing approximately 1.5% CMIT/MIT with different magnesium nitrate concentrations (22.6% and 3%, respectively), were used to compare respiratory effects after intratracheal instillation (ITI) in C57BL/6 mice. C57BL/6 mice were randomized into groups of saline control, magnesium nitrate, Kathon CG, and Proclin 200 with 1.14 mg/kg of CMIT/MIT as the active ingredient, and administration was performed 6 times in a 2-3 day-interval in 2 weeks in all groups. Differential cell count analysis, cytokine analysis, and histological analysis of lung tissue were performed to characterize the injury features. Both Kathon and Proclin 200 induced an increase in inflammatory cell levels in the bronchoalveolar lavage (BAL) fluid, in particular, eosinophils and type 2 T helper cell (Th2)-secreted cytokines. All histopathological changes including granulomatous inflammation, mixed inflammatory cell infiltration, mucous cell hyperplasia, eosinophil infiltration, and pulmonary fibrosis were induced with similar frequency and severity in Kathon CG and Proclin 200 groups. Our results suggested that magnesium nitrate did not affect CMIT/MIT-induced lung injury in the intratracheally instilled model. Further inhalation studies are needed to determine the distribution and toxicity differences of CMIT/MIT in the lungs according to the magnesium nitrate concentration.

Keywords: Chloromethylisothiazolinone; Humidifier disinfectant; Lung injury; Magnesium nitrate; Methylisothiazolinone; Stabilizer.