Tracking SARS-CoV-2 seropositivity in rural communities using blood-fed mosquitoes

medRxiv [Preprint]. 2023 Jun 16:2023.06.13.23291267. doi: 10.1101/2023.06.13.23291267.

Abstract

The spread of SARS-CoV-2 cannot be well monitored and understood in areas without capacity for effective disease surveillance. Countries with a young population will have disproportionately large numbers of asymptomatic or pauci-symptomatic infections, further hindering detection of infection in the population. Sero-surveillance on a country-wide scale by trained medical professionals may be limited in scope in resource limited setting such as Mali. Novel ways of broadly sampling the human population in a non-invasive method would allow for large-scale surveillance at a reduced cost. Here we evaluate the collection of naturally bloodfed mosquitoes to test for human anti-SARS-CoV-2 antibodies in the laboratory and at five field locations in Mali. Immunoglobulin-G antibodies were found to be readily detectable within the mosquito bloodmeals by a bead-based immunoassay at least through 10 hours post-feeding with high sensitivity (0.900 ± 0.059) and specificity (0.924 ± 0.080), respectively, indicating that most blood-fed mosquitoes collected indoors during early morning hours (and thus, have likely fed the previous night) are viable samples for analysis. We find that reactivity to four SARS-CoV-2 antigens rose during the pandemic from pre-pandemic levels. Consistent with other sero-surveillance studies in Mali, crude seropositivity of blood sampled via mosquitoes was 6.3% in October/November 2020 over all sites, and increased to 25.1% overall, with the town closest to Bamako reaching 46.7% in February of 2021. Mosquito bloodmeals a viable target for conventional immunoassays, and therefore country-wide sero-surveillance of human diseases (both vector-borne and non-vector-borne) is attainable in areas where human-biting mosquitoes are common, and is an informative, cost-effective, non-invasive sampling option.

Keywords: Africa; COVID-19; mosquito blood meal; population-based epidemiology; sero-surveillance.

Publication types

  • Preprint