Mercury reduction by black carbon under dark conditions

Water Res. 2023 Aug 15:242:120241. doi: 10.1016/j.watres.2023.120241. Epub 2023 Jun 20.

Abstract

An accurate depiction of mercury (Hg) reduction is important to predict Hg biogeochemistry in both aquatic and soil systems. Although the photoreduction of Hg is well documented, reduction in the dark is poorly known and is thus the focus of this work. Black carbon (BC), an important constituent of organic matter in environments, can reduce Hg2+ in dark and oxygen-deficient conditions. Fast removal of Hg2+ in BC/Hg2+ solution was observed, with 4.99-86.88 L mg-1h-1 of the reaction rate constant, which could be ascribed to the combined actions of adsorption and reduction. Meanwhile, slow Hg reduction was obtained, compared to Hg removal, with 0.06-2.16 L mg-1h-1 of the reaction rate constant. Thus, in the initial stage, Hg2+ removal was mainly triggered by adsorption, rather than reduction. Afterward, the adsorbed Hg2+ on black carbon was converted into Hg0. Dissolved black carbon and aromatic CH on particulate black carbon were dominant triggers of Hg reduction for black carbon. During Hg reduction, the intastable intermediate, formed in the complex between aromatic CH and Hg2+, behaved as persistent free radicals, which could be detected by in situ electron paramagnetic resonance. Subsequently, the intastable intermediate was mainly converted into CO on black carbon and Hg0. Corresponding results of the present study highlight the important role of black carbon in the Hg biogeochemical cycle.

Keywords: Black carbon; Hg reduction; In situ electron paramagnetic resonance; Persistent free radicals.