Enhanced In-Plane Thermal Conductivity and Mechanical Strength of Flexible Films by Aligning and Interconnecting Si3N4 Nanowires

ACS Appl Mater Interfaces. 2023 Jul 12;15(27):32885-32894. doi: 10.1021/acsami.3c04473. Epub 2023 Jul 1.

Abstract

As the rapid development of advanced foldable electronic devices, flexible and insulating composite films with ultra-high in-plane thermal conductivity have received increasing attention as thermal management materials. Silicon nitride nanowires (Si3N4NWs) have been considered as promising fillers for preparing anisotropic thermally conductive composite films due to their extremely high thermal conductivity, low dielectric properties, and excellent mechanical properties. However, an efficient approach to synthesize Si3N4NWs in a large scale still need to be explored. In this work, large quantities of Si3N4NWs were successfully prepared using a modified CRN method, presenting the advantages of high aspect ratio, high purity, and easy collection. On the basis, the super-flexible PVA/Si3N4NWs composite films were further prepared with the assistance of vacuum filtration method. Due to the highly oriented Si3N4NWs interconnected to form a complete phonon transport network in the horizontal direction, the composite films exhibited a high in-plane thermal conductivity of 15.4 W·m-1·K-1. The enhancement effect of Si3N4NWs on the composite thermal conductivity was further demonstrated by the actual heat transfer process and finite element simulations. More significantly, the Si3N4NWs enabled the composite film presenting good thermal stability, high electrical insulation, and excellent mechanical strength, which was beneficial for thermal management applications in modern electronic devices.

Keywords: filler alignment; flexible composite films; in-plane thermal conductivity; polyvinyl alcohol; silicon nitride nanowires.