Decoding the role of fatty acids and their metabolites in lung fibrosis

Pol Arch Intern Med. 2023 Jun 30;133(7-8):16520. doi: 10.20452/pamw.16520. Epub 2023 Jun 30.

Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive and life‑threatening interstitial lung disease of familial or sporadic onset. The incidence and prevalence of IPF range from 0.09 to 1.3 and from 0.33 to 4.51 per 10 000 people, respectively. IPF has a poor prognosis, and death usually occurs within 2 to 5 years following the diagnosis due to secondary respiratory failure. Currently, there are 2 drugs available to treat IPF, pirfenidone and nintedanib. Both only slow the disease progression and, in addition, have unfavorable safety profiles. IPF bears the histology of usual interstitial pneumonia, which is characterized by bronchiolization of distal airspaces, honeycombing, fibroblastic foci, and abnormal epithelial hyperplasia. In the last years, alterations in metabolic pathways, in particular those associated with fatty acid (FA) metabolism have been linked with the pathogenesis of lung fibrosis. Changes in FA profiles have been reported in lung tissue, plasma, and bronchoalveolar lavage fluid of IPF patients, and have been found to correlate with the disease progression and outcome. In addition, they have been associated with the development of a profibrotic phenotype of epithelial cells, macrophages, and fibroblasts / myofibroblasts contributing to their (trans)differentiation and production of the disease‑relevant mediators. Furthermore, strategies focusing on the correction of FA profiles in experimental models of lung fibrosis brought advances in understanding tissue scarring processes and contributed to the transition of new molecules into clinical development. This review highlights the role of FAs and their metabolites in IPF and provides evidence for therapeutic potential of lipidome manipulations in the treatment of this disease.

Publication types

  • Review

MeSH terms

  • Bronchoalveolar Lavage Fluid
  • Disease Progression
  • Humans
  • Idiopathic Pulmonary Fibrosis* / drug therapy
  • Idiopathic Pulmonary Fibrosis* / metabolism
  • Lung / pathology
  • Lung Diseases, Interstitial*